
JOURNAL OF APPROXIMATION THEORY 19,361-370 (1977)

Growth and Complete Sequences of
Generalized AXisym metric Potentials*

ALLAN J. FRYANT

Mathematics Department, U.S. Nawl Academy, Annapolis, Maryland 21402

Communicated by Oved Shisha

Received November 24, 1975

I. INTRODUCTION

Solutions of the n-dimensional Laplace equation

which depend only on the variables

and

are naturally called axisymmetric potentials. These satisfy the partial dif
ferential equation

where 211- = n - 2.
Solutions of Eq. (1.0) for 211- > 0 (211- not necessarily an integer) were

first investigated by Weinstein [7] and cal1ed generalized axisymmetric
potentials.

Let H(x, y) be a generalized axisymmetric potential (GASP). If H is entire,
that is, it has no finite singularities, then Gilbert's A" integral operator
[2, p. 168] transforms an entire function h of a single complex variable to H:

H(x, y) = AJh)

= (x" t h(z)a - '-1)2" '-1 d'
(1.
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where
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z = x + iya + ~-1)/2,

and

a" = [ta- ~-1)2,,-1 ~-l d~rl

= 4r(2/L)/(4i)21t r(/L)2.

For H entire, the integral representation (1.1) holds throughout the plane.
The function h is called the A" associate of H. Letting x = r cos e,

y = r sin e, an entire GASP has expansion

00

H(r, e) = I anrnCn"(cos e)
n~O

(1.2)

which converges uniformly on compact sets, where Cn" are the Gegenbauer
polynomials of degree n. The corresponding A" associate is then

_ 00 r(n + 2/L) n
h(z) - .to r(2/L) r(n + I) anz .

The inverse transformation A;l is given by

h(z) = A;:l(H)

= r H(r, e) K(z/r, e) de,
o

where

I z 1< r, (1.3)

/Lr(2/L) (sin e)2"(1 - Z2/r 2)
K(z/r, e) = 22" lr(/L + 1/2)2 [1 _ 2(z/r) cos e + Z2/r2]"+1

[2, p. 173].
The A" integral operator provides a means of obtaining function theoretic

type results for GASP's. That is, although function theoretic techniques
may not have analogs in the theory of partial differential equations,
results may be obtained directly by using the A" integral operator to relate
properties ofa GASP and its associate. In this paper the relation of the growth
of an entire GASP to that of its A" associate will be considered, with the
primary aim of characterizing the growth of the GASP in terms of its coeffi
cients an in the expansion (1.2).

Section 2 deals with order, and functions of regular growth. In Section 3
proximate orders for GASP's, type with respect to a proximate order, and
functions of perfectly regular growth are considered. In Section 4 we apply
the previous results to obtain a method for generating complete sequences of
GASP's from a single entire GASP.
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2. ORDER OF AN ENTIRE GASP
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Let M(r, H) = max8 1 H(r, 8)[ . We define the order PH of the GASP H
just as is done for entire analytic functions of a single complex variable:

_ I" log log M(r, H)
PH - 1m sup I .

hoo og r

From the A" integral operator (1.1) we have

M(r, H) :(: M(r, h).

Letting z = "Areit , 0 < "A < I, in the inverse transform A;::-l yields

M("Ar, h) = m~x IrH(r, 8) K("Aeit, 8) dB I
:(: max max 7T I H(r, 8) K("Aeit, B)1

t 8 .

:(: 7T max K("Aeit, e) M(r, H).
8,t

Thus
M(r, h) :(: k("A) M(A-Ir, H)

where

7TflT(2JL) I (sin 8)2"(1 - "A 2e2it) I
k("A) = 22,,-IF(JL + 1/2)2 ~~x (1 _ 2"Aeit cos B+ ,.\2e2it)"+1 .

We note that lim,H k (i\) = 00.

(2.1)

(2.2)

THEOREM 2.1. Let H be an entire GASP and let h be its A" associate. Then
the orders PH of H and Ph ofh are equal.

Proof Equation (2.1) implies PH :(: Ph . Further, by (2.2) we have

I
. log log M(r, h)

Ph = 1m sup I
r~OO og r

____ l' log log k("A) M(A-lr, H)
~ 1m sup

r-,oo log r

I
. log[log M("A-Ir, H) + log k("A)]

= 1m sup
r-"oo log "A-1r - log'\ 1

1
. log log M("A-1r, H)

= 1m sup
r-"oo log "A-Ir

= PH'
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COROLLARY 2.2. Let H be an entire GASP and {an};;" the coefficients of H
in its expansion (1.2). Then

" n logn
PH = hm sup I I 1-1 •

n->oo og an

Proof. The order of an entire function of a single complex variable
L:~o cnzn is given in terms of its coefficients by [5, p. 4]

lim sUPn~ro (n log n)/log I en 1-1.

The GASP (1.2) has A" associate

thus

Ph = limn .~up (n log n) [log I an 1-1 + log T(211') T(n + 1) ]-1
~~ T(n + 211') .

Since [T(211') T(n + 1)/T(n + 211')]l j n -+ 1,

" n log n
Ph = hm sup I I 1-1

n->oo og an

which by Theorem 2.1 equals PH .
An entire GASP H will be said to have regular growth if

I
" log log M(r, H)1m ---"'---=----'-'----'--

f->'" log r

exists (cf. [6, p. 41] regarding regular growth of entire functions of a single
complex variable). Thus a GASP H of order PH = P < 00 is of regular growth
if and only if for every E > 0, there exists R such that

exp(rP-
E

) ~ M(r, H) ~ exp (ro+<)

for every r ;?: R.

THEOREM 2.3. Let H be an entire GASP and {an}~ the coefficients of H in
the expansion (1.2). Then

I
" log log M(r, H)1m .. = P

r->ro log r

if and only iffor every E > 0,

n log n ~

log I an 1-1 "" P + €



GENERALIZED AXISYMMETRIC POTENTIALS

for all n sufficiently large, and there exists a sequence {nlc}~~o such that

1· log nk+l1m =k-.;w log nk

for which

1" nklognk·1m = p
k-;w log I an \-1 .
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Proof. Using the inequalities (2.1) and (2.2) a routine computatiCin
verifies that an entire GASP is of regular growth if and only if its associate is.
Further an entire function of a single complex variable L:~o anzn is of regular
growth if and only if its coefficients satisfy the conditions stated in the
above theorem (cC [6, p. 44]). Therefore since the A" associate of

H(r, B) = I anrnCn"(cos B)
n=O

IS

_ w F(n + 2r-) n

h(z) - ~o F(2r-) F(n + 1) anz ,

the result follows as a consequence of the fact that

lim [ F(n + 2r-) ]l/n = 1
n-.;w F(2r-) F(n) .

3. PROXIMATE ORDER AND RESPECTIVE TYPE OF AN ENTIRE GASP

The concept of proximate order generalizes that of order, and is introduced
in function theory so as to obtain a measure of growth more refined than
type (eg. see [5, p. 32]). We define proximate orders for entire GASP's
following the usual function theoretic definition.

DEFINITION 3.1. Let H be an entire GASP of order p cF 0, CD. A con
tinuous function per) which is differentiable except perhaps at isolated points
is said to be a proximate order for H if it satisfies

lim per) = p,
r-.;W

lim rp'(r) log r = 0,
r-.;w

r log M(r, H) '* 0
In;-.;~Up . rp(r) -, CD.

(3.2)

(3.3)
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The quantity
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_ I' log M(r, H)
UH - lmsup ()

f-'»oo rP r

is called the type ofH with respect to the proximate order per).
For entire functions of a single complex variable, proximate orders always

exist but are not unique [1, 5]. The questions of the existence and uniqueness
of proximate orders for entire GASP's and the relation of proximate orders
and respective types to those of their corresponding A" associates are ans
wered by

THEOREM 3.2. Let H be an entire GASP of order p =1= 0, 00 and h its A"
associate. Then a function per) is a proximate order for H if and only if it is a
proximate order for the associate h. Further the types UH ofH and Uk ofh with
respect to the same proximate order per) are equal.

Proof Let per) be a continuous function which is differentiable except
perhaps at isolated points and satisfies (3.1) and (3.2). The inequality (2.2)
implies

r log M(r, h) s.. r log k(A) M(A-Ir, H)
1~~UP rP(r) '--'" 1I?->~UP , rp(1')

Now the properties (3.1) and (3.2) imply the function L(r) = rP(r)-p is
slowly increasing. That is, for 0: > 0 limr->oo L(cxr)/L(r) = 1. Thus given
E > 0 there exists R such that

r ?' R.

i.e.,

Therefore

I
, log M(A-Ir, H) .--- I' (1 + E) A-P log M(A-Ir, H)1m sup ( ~ 1m sup ~-----'---=---:-'-_-'-----'-

r->oo rP r) r->o'.> (X-Ir)p(.~-lr)

Since the choice of E > 0 and A E (0, 1) are arbitrary, this yields

r log M(r, h) s.. r log M(r, H)
l~~UP rP(T) "'" II?-4~UP rP(r)

By (2.1) the reverse inequality is immediate. Further, by Theorem 2.1 the
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order of H and of its AI' associate h are equal. Thus the result follows from
the equality

I
, log M(r, h) _ I' log M(r, H)
1m sup ( ) - 1m sup (r) •

r~oo rDr r~oo r P

As a coronary we have a formula expressing the type of a GASP with
respect to a proximate order in terms of the coefficients in its expansion (1.2):

COROLLARY 3.3. Let H be an entire GASP of order p and let {an}; be the
coefficients ofH in its expansion (1.2). If per) is a proximate order for H and a
is the type ofH with respect to per), then

(ape)l/p = lim sup ep(n) i an 1
1 /n ,

r->oo
(3.4)

(p = order H),

where ep(t) is the inverse ofthe function t = rP(rl.

Proof Equation (3.4) gives the type of an entire function of a single
complex variable fez) = L::=o anzn with respect to the proximate order
per), [5, p. 42]. The proof now follows that of Corollary 2.2.

Gilbert [3] has shown that the type

r log M(r, H)
r = 1m sup r

P

of an entire GASP equals the type of its A" associate, and as a consequence

(rep)llp = lim sup nI/p I an ?/n.
n->oo

Since proximate order and type with respect to a proximate order generalize
order and type, these results obtain as special cases of Theorem 3.2 and
Corollary 3.3, i.e., the.case in which per) = p.

We can GASP's of order p for which the limit

I
. log M(r, H)
1m

7-')00 rP

exists, functions ofperfectly regular growth. From the necessary and sufficient
conditions that an entire analytic function be of perfectly regular growth
[6, p. 44], we have on arguing as in Theorem 2.3 the following characteriza
tion of entire GASP's of perfectly regular growth.

THEOREM 3.4. Let H be an entire GASP of order p and let {an}6 be its
coefficients in the expansion (1.2), Then,

lim log Mer, H) = r
7->;-00 rP
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if only iffor every € > °
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for all n sufficiently large and there exists a sequence {nk}~ such that

for which

4. GENERATING COMPLETE SEQUENCES OF GASP's

As an application of the preceding t:esults, we obtaina method for genera
ting complete sequences of GASP's from a single entire GASP. This will be
done by appealing to an analogous function theoretic result first proved by
Gel'fond [4], and later refined by Levin [5, p. 217].

Inspection of the partial differential equation (1.0) shows that entire
GASP's are invariant under homothetic transformation. That is, if H(x, y)
is an entire GASP and ,\ is any real number, then H('\x, '\y) is an entire
GASP. Defining Cn"(x, y) = rnCn" (cos 8) we have.

Cn"(x, y) = A,,(zn)

= IX"r (x + iy cos t)n(sin t)2"-1 dt.
o

Thus if H has the expansion (1.2), H(.\x, '\y) = L::~o anAncn,,(X, y).

THEOREM 4.1. Let H(x, y) ~ L::~o akCk"(x, y) be an entire real-valued
GASP with ak =F 0, k = 0, 1,2,.... If H has type at most a with respect to
the proximate order per), and {'\n}~ is any sequence of distinct real numbers,
then the sequence ofentire GASP's

n = 0,1,2...

is complete in the space ofall real-valued GASP's on the open disk DR centered
at °and of radius F. given by

(4.1)
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Proof By Theorem 3.2 per) is a proximate order for the A" associate of

and the types with respect to per) are equal i.e., (Jh = UH = u. Thus by the
function theoretic result [5, p. 217], the sequence of functions

is complete on the open disk DR where R is given by (4.1).
Now, let G(x, y) be any real-valued GASP regular on DR, and g its

associate. Then g is analytic on DR and by the completeness of {hlc(Z)}~ there
exist linear combinations

n

qn(z) = I aicnlh,,(z)
,,~O

which converge uniformly to g on compact subsets of DR' Now,

A,,(hn) = a"rhn(x + iy cos t)(sin t)2,,-1 dt
o

= a"rh(AnX + iAny cos t)(sin t)2"-1 dt

= H(AnX, AnY)

= Hn(x,y).

Thus letting
n

Qn(X' y) = I aicn'H,,(x, y)
k~O

yields

I G(x, y) - Qn(X, Y)l

= I A,,(g - qn)[

= Ia" {T [g(x + iy cos t) - q..(x + iy cos t)](sin t)2"-1 dt I
~ max I g(x + iy cos t) - qn(X + iy cos t)l.

t

Thus the completeness of {hn}~ on DR implies that of {Hn}~'
The result of Theorem 4.1 also holds for complex-valued GASP's as is

evident by arguing on real and imaginary parts.
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Thus a single entire solution of Eq. (1.0) can be used to construct a
sequence of solutions which is complete in the space of all solutions regular
on a disk DR of arbitrary radius R. This is done merely by appropriate choice
of the numbers An . For example, choosing {An};;' as any bounded sequence
of distinct reals yields R = 00 in Eq. (4.1) so that {Hn};;' forms a complete
sequence over the entire plane.
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